4.8 Article

Elastic Gallium Phosphide Nanowire Optical Waveguides-Versatile Subwavelength Platform for Integrated Photonics

期刊

SMALL
卷 19, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202301660

关键词

elastic; gallium phosphide; nanowires; optical circuits; waveguides

向作者/读者索取更多资源

Emerging technologies for integrated optical circuits require novel approaches and materials, such as self-assembled gallium phosphide (GaP) epitaxial nanowires. This research investigates the effects of nanowire geometry on waveguiding properties and demonstrates the fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared ranges. The study also reveals the filtering properties of the nanowires and the possibility of developing nanoscale waveguides with a preassigned geometry using GaP nanowires.
Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据