4.8 Article

Zinc-Doping Strategy on P2-Type Mn-Based Layered Oxide Cathode for High-Performance Potassium-ion Batteries

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202302160

关键词

Jahn-Teller distortion; K0 02Na0 55Mn0 70Ni0 25Zn0 05O2 cathodes; Mn-based layered oxide; Zn-doping strategy

向作者/读者索取更多资源

In this study, a Zn-doped K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 material (denoted as KNMNO-Z) was reported to inhibit the Jahn-Teller effect and reduce the irreversible phase transition in potassium-ion batteries. Through the Zn-doping strategy, higher Mn valence was achieved, leading to an improvement in cyclic stability with a high retention rate of 97% after 1000 cycles.
Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn-Teller distortion caused by high-spin Mn3+(t(2g)(3)e(g)(1)) destabilizes the host structure and reduces the cycling stability. Here, K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn-Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the Mn-O bonding, thereby alleviating the anisotropic coupling between oxidized O2- and Mn4+ and improving the structural stability. K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 provided an initial discharge capacity of 57 mAh g(-1) at 100 mA g(-1) and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据