4.8 Article

External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1T-VSe2 Ferromagnetic Nanoparticles

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202300122

关键词

confined structures; external magnetic fields; ferromagnetic nanoparticles; metallic 1T-VSe2; oxygen evolution reaction

向作者/读者索取更多资源

This study successfully confines monodisperse 1T-VSe2 nanoparticles in an amorphous carbon matrix using a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment. With external magnetic fields of 800 mT stimulation, these confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity and remarkable durability. The experimental results demonstrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2, and modify the adsorption-free energy of *OOH, thus improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics and promotes the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.
As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe2 is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe2 nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm(-2) and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2, and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据