4.8 Article

Tunable Molecular Electrodes for Bistable Polarization Screening

期刊

SMALL
卷 19, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202207799

关键词

BaTiO3 ferroelectric thin films; chemical electrodes; graphene ferroelectric capacitors; molecular functionalization; para-aminobenzoic acid (pABA) molecules; polarization screening

向作者/读者索取更多资源

Resonance-hybrid surface functionalization can enhance the coercivity of ferroelectric materials and allow writing localized domains of different polarity underneath the same electrode.
The polar discontinuity at any ferroelectric surface creates a depolarizing field that must be screened for the polarization to be stable. In capacitors, screening is done by the electrodes, while in bare ferroelectric surfaces it is typically accomplished by atmospheric adsorbates. Although chemisorbed species can have even better screening efficiency than conventional electrodes, they are subject to unpredictable environmental fluctuations and, moreover, dominant charged species favor one polarity over the opposite. This paper proposes a new screening concept, namely surface functionalization with resonance-hybrid molecules, which combines the predictability and bipolarity of conventional electrodes with the screening efficiency of adsorbates. Thin films of barium titanate (BaTiO3) coated with resonant para-aminobenzoic acid (pABA) display increased coercivity for both signs of ferroelectric polarization irrespective of the molecular layer thickness, thanks to the ability of these molecules to swap between different electronic configurations and adapt their surface charge density to the screening needs of the ferroelectric underneath. Because electron delocalization is only in the vertical direction, unlike conventional metals, chemical electrodes allow writing localized domains of different polarity underneath the same electrode. In addition, hybrid capacitors composed of graphene/pABA/ferroelectric have been made with enhanced coercivity compared to pure graphene-electode capacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据