4.8 Article

2D Cobalt Chalcogenide Heteronanostructures Enable Efficient Alkaline Hydrogen Evolution Reaction

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202302056

关键词

density functional theory (DFT) calculations; electrocatalysts; electrospinning; heterostructured nanosheets; hydrogen evolution reactions

向作者/读者索取更多资源

A highly active electrocatalyst composed of 2D CoSe2/Co3S4 heterostructured nanosheets and Co3O4 nanofibers is presented for hydrogen production. The heterostructures promote the growth of 2D structure due to the different reaction rates between ion exchange and redox reactions. The electrocatalysts based on CoSe2/Co3S4@Co3O4 exhibited low overpotentials and excellent long-term stability.
The development of high-efficiency non-precious metal electrocatalysts for alkaline electrolyte hydrogen evolution reactions (HER) is of great significance in energy conversion to overcome the limited supply of fossil fuels and carbon emission. Here, a highly active electrocatalyst is presented for hydrogen production, consisting of 2D CoSe2/Co3S4 heterostructured nanosheets along Co3O4 nanofibers. The different reaction rate between the ion exchange reaction and redox reaction leads to the heterogeneous volume swelling, promoting the growth of 2D structure. The 2D/1D heteronanostructures enable the improved the electrochemical active area, the number of active sites, and more favorable H binding energy compared to individual cobalt chalcogenides. The roles of the different composition of the heterojunction are investigated, and the electrocatalysts based on the CoSe2/Co3S4@Co3O4 exhibited an overpotential as low as 165 mV for 10 mA cm(-2) and 393 mV for 200 mA cm(-2) in 1 m KOH electrolyte. The as-prepared electrocatalysts remained active after 55 h operation without any significant decrease, indicating the excellent long-term operation stability of the electrode. The Faradaic efficiency of hydrogen production is close to 100% at different voltages. This work provides a new design strategy toward Co-based catalysts for efficient alkaline HER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据