4.8 Review

Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202302640

关键词

antibacterial activity; antibacterial agents; bacteria binding; composition; nanozymes; surface chemistry

向作者/读者索取更多资源

With diverse structures, tunable enzymatic activity, and high stability, nanozymes are widely used in various fields such as medicine, chemistry, food, and environment. They have gained increasing attention as an alternative to traditional antibiotics. Developing antibacterial materials based on nanozymes opens up a new avenue for bacterial disinfection and sterilization.
With the advantages of diverse structures, tunable enzymatic activity, and high stability, nanozymes are widely used in medicine, chemistry, food, environment, and other fields. As an alternative to traditional antibiotics, nanozymes attract more and more attention from the scientific researchers in recent years. Developing nanozymes-based antibacterial materials opens up a new avenue for the bacterial disinfection and sterilization. In this review, the classification of nanozymes and their antibacterial mechanisms are discussed. The surface and composition of nanozymes are critical for the antibacterial efficacy, which can be tailored to enhance both the bacterial binding and the antibacterial activity. On the one hand, the surface modification of nanozymes enables binding and targeting of bacteria that improves the antibacterial performance of nanozymes including the biochemical recognition, the surface charge, and the surface topography. On the other hand, the composition of nanozymes can be modulated to achieve enhanced antibacterial performance including the single nanozyme-mediated synergistic and multiple nanozymes-mediated cascade catalytic antibacterial applications. In addition, the current challenges and future prospects of tailoring nanozymes for antibacterial applications are discussed. This review can provide insights into the design of future nanozymes-based materials for the antibacterial treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据