4.8 Article

Reversed Regulation Effects of ssDNA on the Mimetic Oxidase and Peroxidase Activities of Covalent Organic Frameworks

期刊

SMALL
卷 19, 期 27, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202207798

关键词

covalent organic framework; mimetic enzymes; oxidase; peroxidase; single-stranded DNA

向作者/读者索取更多资源

A covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase and peroxidase activities are inversely regulated by single-stranded DNA (ssDNA). Under LED light irradiation, Tph-BT exhibits outstanding oxidase activity, which is inhibited by ssDNA with poly-thymidine (T) sequences, while its weak peroxidase activity is enhanced by ssDNA with poly-cytosine (C) sequences. The study also investigates the influence of base type, base length, and other factors on the activities of the two enzymes, revealing the mechanisms behind the regulation by ssDNA.
Nanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3 ',5,5 '-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity. On the contrary, Tph-BT showed weak peroxidase activity, and the presence of ssDNA, particularly poly-cytosine (C) sequences, can remarkably enhance the peroxidase activity. The influence of base type, base length, and other factors on the activities of two enzymes is also studied, and the results reveal that the adsorption of ssDNA on the surface of Tph-BT prevented intersystem crossing (ISC) and energy transfer processes to reduce O-1(2) generation, while the electrostatic interaction between ssDNA and TMB enhanced Tph-BT's affinity for TMB to facilitate the electron transfer from TMB to (OH)-O-center dot. This study investigates multitype mimetic enzyme activities of nonmetallic D-A conjugated COFs and demonstrates their feasibility of regulation by ssDNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据