4.7 Article

Remarkable formaldehyde photo-oxidation efficiency of Zn2SnO4 co-modified by Mo doping and oxygen vacancies

期刊

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2023.123202

关键词

Formaldehyde removal; Zn2SnO4; Mo doping; Oxygen vacancies

向作者/读者索取更多资源

Formaldehyde is a major contributor to air pollution and a green technology called photocatalytic oxidation has been developed to remove it. However, there are still challenges to overcome, such as insufficient reaction active sites and active species. In this study, a new photocatalyst was prepared using a hydrothermal method, which improved the efficiency of formaldehyde removal.
Formaldehyde (HCHO) is one of the major volatile organic compounds (VOCs) contributing to both urban and indoor air pollution. It is emitted from several industrial activities and construction materials. Photocatalytic oxidation is a green promising technology aiming at HCHO removal. However, it still has some scientific challenges not fully addressed, like insufficient reaction active sites and not enough active species. This results in low HCHO removal efficiency, several toxic intermediates and poor stability. Therefore, the design of photocatalysis with surface-active sites, improved mineralization activity and recycling stability is of crucial importance. Herein, we report a facile one-pot hydrothermal method to prepare Zn2SnO4 (ZSO) with transition metal Mo doping (using Na2MoO4 center dot 2H(2)O as molybdenum source). Our experiments show that Mo is successfully incorporated into the ZSO lattice and contributes to the generation of oxygen vacancies (OVs). Moreover, the introduction of Mo enhances the separation and migration of photogenerated carriers and hinders their recombination. Furthermore, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal that switching the active sites from O terminals to Mo ones effectively improves adsorption and activation of the target molecules (O-2, H2O, and HCHO), and promotes conversion of the reaction intermediates. Thus, ZSO co-modified by Mo doping and oxygen vacancies allows to achieve an efficient HCHO removal activity of 96%, which is much higher than pristine ZSO (21%) and other previously reported photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据