4.7 Article

Au-doped ZnO@ZIF-7 core-shell nanorod arrays for highly sensitive and selective NO2 detection

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 384, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2023.133632

关键词

Metal oxides; Metal organic frameworks; Au doping; NO 2 sensors; DFT calculations

向作者/读者索取更多资源

The exploration of high-performance NO2 sensors is important for air quality monitoring and human health. This study fabricated Au-doped ZnO@ZIF-7 core-shell nanorod arrays for sensitive and selective NO2 detection. The heterostructured ZnO-Au@ZIF-7 sensor showed excellent performance in terms of sensitivity, selectivity, anti-humidity capacity, and long-term stability. This approach combining noble metals doped semiconductor metal oxides (SMOs) and MOF filtration membranes can be extended to the development of advanced chemiresistive gas sensors.
The exploration of novel NO2 sensors with high performance is of great importance for air quality monitoring and human health. In this work, Au-doped ZnO@ZIF-7 core-shell nanorod arrays were fabricated for high-performance NO2 detection. Due to the spill-over effects of Au nanoparticles, gas enriching and molecular sieving effects provided by ZIF-7 membranes, the ZnO-Au@ZIF-7 sensor affords highly sensitive and selective detection of NO2. The heterostructured ZnO-Au@ZIF-7 allows for ppb-level detection of NO2 (Response = 1.7-5 ppb) with excellent repeatability and provides improved selectivity, anti-humidity capacity, and long-term stability compared with bare ZnO, Au-doped ZnO or ZnO@ZIF-7 core-shell nanorod arrays. According to the calculation of density functional theory (DFT), the ZnO-Au@ZIF-7 sensor renders higher adsorption energy to-wards NO2 molecules compared with the aforementioned other materials, which also explains its outstanding sensing performances. We believe our approach that combines noble metals doped semiconductor metal oxides (SMOs) and MOF filtration membranes can be further extended to numerous new heterostructured SMO@MOF materials, which opens venues to the development of advanced chemiresistive gas sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据