4.7 Article

Humidity-activated ammonia sensor based on mesoporous AlOOH towards breath diagnosis

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 380, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2023.133322

关键词

Mesoporous AlOOH; Ammonia sensor; Humidity-activation; Exhaled breath analysis; High selectivity

向作者/读者索取更多资源

The discrimination and quantitation of ammonia (NH3) exhaled from human beings using oxide chemiresistors has shown great potential for non-invasive and direct diagnosis of helicobacter pylori gastropathy and end-stage renal disease. A humidity-activated sensor employing AlOOH was designed and demonstrated, exhibiting high selectivity and response toward ppb-level of NH3 under 98 % humidity at room temperature. Enhanced adsorption of NH3 at abundant Bronsted acid sites and an effective ammonium ionic transmitting pathway induced by adsorbed moisture were proposed as the reasons behind the humidity-activated gas-sensing mechanism.
Discrimination and quantitation of ammonia (NH3) exhaled from human beings using oxide chemiresistors has shown great potential for non-invasive and direct diagnosis of helicobacter pylori gastropathy and end-stage renal disease. Herein, a newly humidity-activated sensor employing AlOOH that synthesized by a simple approach consisting of in-situ etching treatment and hydrothermal method is designed and demonstrated. The humidity-activated AlOOH sensor exhibits a high selectivity and response toward ppb-level of NH3 under 98 % relative humidity at room temperature, neglecting the water poisoning effect on gas-sensing characteristics. The enhanced adsorption of NH3 at abundant Bronsted acid sites, and the effective ammonium ionic transmitting pathway induced by adsorbed moisture are proposed as the reasons behind the humidity-activated gas-sensing mechanism. Analysis using direct current analysis, complex impedance spectra and temperature programmed desorption (TPD) are performed to verify the above proposals. This study provides new pathway for rapid and stable detection of NH3 in human breath.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据