4.6 Article

A Sliding Scale Signal Quality Metric of Photoplethysmography Applicable to Measuring Heart Rate across Clinical Contexts with Chest Mounting as a Case Study

期刊

SENSORS
卷 23, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/s23073429

关键词

photoplethysmography; PPG; heart rate; signal quality

向作者/读者索取更多资源

Photoplethysmography (PPG) signal quality is important in accurately measuring heart rate (HR) in various public health contexts. This study proposes two metrics as sliding scales of PPG signal quality and examines their association with HR accuracy. The results show a significant correlation between PPG signal quality and HR accuracy.
Photoplethysmography (PPG) signal quality as a proxy for accuracy in heart rate (HR) measurement is useful in various public health contexts, ranging from short-term clinical diagnostics to free-living health behavior surveillance studies that inform public health policy. Each context has a different tolerance for acceptable signal quality, and it is reductive to expect a single threshold to meet the needs across all contexts. In this study, we propose two different metrics as sliding scales of PPG signal quality and assess their association with accuracy of HR measures compared to a ground truth electrocardiogram (ECG) measurement. Methods: We used two publicly available PPG datasets (BUT PPG and Troika) to test if our signal quality metrics could identify poor signal quality compared to gold standard visual inspection. To aid interpretation of the sliding scale metrics, we used ROC curves and Kappa values to calculate guideline cut points and evaluate agreement, respectively. We then used the Troika dataset and an original dataset of PPG data collected from the chest to examine the association between continuous metrics of signal quality and HR accuracy. PPG-based HR estimates were compared with reference HR estimates using the mean absolute error (MAE) and the root-mean-square error (RMSE). Point biserial correlations were used to examine the association between binary signal quality and HR error metrics (MAE and RMSE). Results: ROC analysis from the BUT PPG data revealed that the AUC was 0.758 (95% CI 0.624 to 0.892) for signal quality metrics of STD-width and 0.741 (95% CI 0.589 to 0.883) for self-consistency. There was a significant correlation between criterion poor signal quality and signal quality metrics in both Troika and originally collected data. Signal quality was highly correlated with HR accuracy (MAE and RMSE, respectively) between PPG and ground truth ECG. Conclusion: This proof-of-concept work demonstrates an effective approach for assessing signal quality and demonstrates the effect of poor signal quality on HR measurement. Our continuous signal quality metrics allow estimations of uncertainties in other emergent metrics, such as energy expenditure that relies on multiple independent biometrics. This open-source approach increases the availability and applicability of our work in public health settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据