4.6 Article

Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability

期刊

SENSORS
卷 23, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/s23042341

关键词

spectral variability; spectral unmixing; hypersharpening; fusion; hyperspectral; multispectral image; spectra bundles; sparse unmixing; automated extraction of endmember bundles; sparse regression based unmixing

向作者/读者索取更多资源

The aim of fusing hyperspectral and multispectral images is to improve their spatial resolutions. However, most fusion methods do not consider spectral variability, leading to reduced quality of the sharpened products. This paper introduces a new method called HSB-SV, which addresses spectral variability using spectra bundles-based method and sparsity-based method.
The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been developed, however most of them do not consider the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches have been proposed to tackle this problem, particularly those based on spectral unmixing and using parametric models. Nevertheless, the reported methods need a large number of parameters to address spectral variability, which inevitably yields a higher computation time compared to the standard hypersharpening methods. In this paper, a new hypersharpening method addressing spectral variability by considering the spectra bundles-based method, namely the Automated Extraction of Endmember Bundles (AEEB), and the sparsity-based method called Sparse Unmixing by Variable Splitting and Augmented Lagrangian (SUnSAL), is introduced. This new method called Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV) was tested on both synthetic and real data. Experimental results showed that HSB-SV provides sharpened products with higher spectral and spatial reconstruction fidelities with a very low computational complexity compared to other methods dealing with spectral variability, which are the main contributions of the designed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据