4.6 Article

Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data

期刊

SENSORS
卷 23, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/s23094444

关键词

deep-learning non-destructive evaluation (NDE); automatic defect identification and segmentation; infrared thermography; pulsed thermography; infrared image processing; convolutional neural network

向作者/读者索取更多资源

This paper discusses the methods of using deep learning algorithms for defect detection and identification in infrared thermography (IRT) images. The aim is to achieve automatic quality management by integrating deep learning models. Different deep learning methods, as well as traditional methods, were evaluated to compare their effectiveness and performance.
Infrared thermography (IRT), is one of the most interesting techniques to identify different kinds of defects, such as delamination and damage existing for quality management of material. Objective detection and segmentation algorithms in deep learning have been widely applied in image processing, although very rarely in the IRT field. In this paper, spatial deep-learning image processing methods for defect detection and identification were discussed and investigated. The aim in this work is to integrate such deep-learning (DL) models to enable interpretations of thermal images automatically for quality management (QM). That requires achieving a high enough accuracy for each deep-learning method so that they can be used to assist human inspectors based on the training. There are several alternatives of deep Convolutional Neural Networks for detecting the images that were employed in this work. These included: 1. The instance segmentation methods Mask-RCNN (Mask Region-based Convolutional Neural Networks) and Center-Mask; 2. The independent semantic segmentation methods: U-net and Resnet-U-net; 3. The objective localization methods: You Only Look Once (YOLO-v3) and Faster Region-based Convolutional Neural Networks (Fast-er-RCNN). In addition, a regular infrared image segmentation processing combination method (Absolute thermal contrast (ATC) and global threshold) was introduced for comparison. A series of academic samples composed of different materials and containing artificial defects of different shapes and nature (flat-bottom holes, Teflon inserts) were evaluated, and all results were studied to evaluate the efficacy and performance of the proposed algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据