4.6 Review

Calvin cycle and guard cell metabolism impact stomatal function

期刊

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
卷 155, 期 -, 页码 59-70

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2023.03.001

关键词

Guard cell metabolism; Stomatal kinetics; Calvin cycle; Photosynthesis

向作者/读者索取更多资源

Stomatal conductance plays a crucial role in determining CO2 uptake and water loss in plants, affecting overall water status and productivity. However, the signals coordinating mesophyll demands for CO2, the role of chloroplasts in stomatal function, and other GC metabolic processes in stomatal function remain poorly understood.
Stomatal conductance (gs) determines CO2 uptake for photosynthesis (A) and water loss through transpiration, which is essential for evaporative cooling and maintenance of optimal leaf temperature as well as nutrient uptake. Stomata adjust their aperture to maintain an appropriate balance between CO2 uptake and water loss and are therefore critical to overall plant water status and productivity. Although there is considerable knowledge regarding guard cell (GC) osmoregulation (which drives differences in GC volume and therefore stomatal opening and closing), as well as the various signal transduction pathways that enable GCs to sense and respond to different environmental stimuli, little is known about the signals that coordinate mesophyll demands for CO2. Furthermore, chloroplasts are a key feature in GCs of many species, however, their role in stomatal function is unclear and a subject of debate. In this review we explore the current evidence regarding the role of these organelles in stomatal behaviour, including GC electron transport and Calvin-Benson-Bassham (CBB) cycle activity as well as their possible involvement correlating gs and A along with other potential mesophyll signals. We also examine the roles of other GC metabolic processes in stomatal function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据