4.7 Article

Changes of phytoplankton and water environment in a highly urbanized subtropical lake during the past ten years

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 879, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.162985

关键词

Inter -annual trends; Water environment; Phytoplankton; N 2-fixing filamentous cyanobacteria; Non -filamentous cyanobacteria; Subtropical lake

向作者/读者索取更多资源

Based on monitoring data from Hongze Lake, China, from 2011 to 2020, it was found that rising water temperature, decrease in nitrate, and increase in water flow and turbidity were the main environmental characteristics. Additionally, the abundance of Chlorophyta, Bacillariophyta, and Cryptophyta significantly declined, while there was an increase in N2-fixing filamentous cyanobacteria and a decrease in non-filamentous cyanobacteria. These findings are crucial for the management of urbanized subtropical lakes.
Phytoplankton and water quality changes in highly urbanized lakes affect the surrounding water safety. However, due to the complexity and variability of natural changes and human disturbances, it is difficult for multi-year research with yearly sampling frequency to cover accurate changes of phytoplankton and water environment or provide constructive suggestions for managers. Based on monthly monitoring data spanning 2011-2020 in a highly urbanized subtropical lake (Hongze Lake, China), Mann-Kendall test, ANOVA analysis and variation partitioning analysis were used to assess the changes of phytoplankton and water environment, and detect dynamic responses of phytoplankton to environmental changes. Rising water temperature during winter and spring, the decrease in nitrate, and the increase in water flow and turbidity were the main environmental characteristics from 2011 to 2020. The average and maximum abundance of Chlorophyta, Bacillariophyta, and Cryptophyta significantly declined, while changes in Cyanobacteria were characterized by an increase of N2-fixing filamentous cyanobacteria and a decrease of non-filamentous cyanobacteria. The rising water temperature during spring may promote the early growth of N2-fixing filamentous cyanobacteria. The decrease in nitrate mainly resulted in the decrease of Chlorophyta and non-filamentous cyanobacteria, and the increase of N2-fixing filamentous cyanobacteria during summer and autumn. The increase of turbidity and water flow inhibited the growth of Chlorophyta, Bacillariophyta, Cryptophyta, and non-filamentous cyanobacteria, but created favourable conditions for the growth of N2-fixing filamentous cyanobacteria. In summer and autumn, managers should focus on the proliferation of N2-fixing filamentous cyanobacteria when precipitation increase, nitrogen nutrients decrease, and non-filamentous cyanobacteria risk under opposite conditions. These findings greatly improved our understanding of the dynamic response of phytoplankton communities to natural changes and anthropogenic disturbances in the urbanized subtropical lakes, and can be used to develop lake management strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据