4.7 Article

The metabolism and dissipation behavior of tolfenpyrad in tea: A comprehensive risk assessment from field to cup

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 877, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.162876

关键词

Pesticide; Metabolites; Processed food; Beverage

向作者/读者索取更多资源

In this study, the metabolites of tolfenpyrad (TFP) in tea plants were identified and the transfer of TFP and its metabolites from tea bushes to consumption was studied for a comprehensive risk assessment. Four metabolites were identified and the dissipation and trends of TFP and its metabolites were examined during tea processing. The results showed that PT-CA posed a greater potential risk than TFP to tea consumers, suggesting the need to consider the sum of TFP and PT-CA residues as the maximum residual limit (MRL) in tea.
The metabolites of pesticides usually require rational risk assessment. In the present study, the metabolites of tolfenpyrad (TFP) in tea plants were identified using UPLC-QToF/MS analysis, and the transfer of TFP and its metab-olites from tea bushes to consumption was studied for a comprehensive risk assessment. Four metabolites, PT-CA, PT-OH, OH-T-CA, and CA-T-CA, were identified, and PT-CA and PT-OH were detected along with dissipation of the parent TFP under field conditions. During processing, 3.11-50.00 % of TFP was further eliminated. Both PT-CA and PT-OH presented a downward trend (7.97-57.89 %) during green tea processing but an upward trend (34.48-124.17 %) dur -ing black tea manufacturing. The leaching rate (LR) of PT-CA (63.04-101.03 %) from dry tea to infusion was much higher than that of TFP (3.06-6.14 %). As PT-OH was no longer detected in tea infusions after 1 d of TFP application, TFP and PT-CA were taken into account in the comprehensive risk assessment. The risk quotient (RQ) assessment in-dicated a negligible health risk, but PT-CA posed a greater potential risk than TFP to tea consumers. Therefore, this study provides guidance for rational TFP application and suggests the sum of TFP and PT-CA residues as the maximum residual limit (MRL) in tea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据