4.7 Article

Chironomus riparius molecular response to polystyrene primary microplastics

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 868, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.161540

关键词

Gene expression; Metabolic pathways; Microplastic; Invertebrate

向作者/读者索取更多资源

Microplastics are a major concern for the environment, being found globally due to industrial production and plastic debris degradation. They are small in size, less than 5 mm, and can exist in soil and aquatic ecosystems at micro and nanometer scales. They can have diverse chemical compositions, including potentially toxic additives. The research shows that Chironomus riparius, an aquatic dipteran species, is able to ingest microplastics and it affects the metabolism of these organisms. However, the understanding of the molecular-level effects of microplastics on invertebrates is still limited.
Microplastics are emerging as a central concern for the environment. They can be found worldwide, produced for the industry and because of plastic debris degradation. The microplastics are smaller than 5 mm, but they can also range in micro and nanometer scales, present in soil and aquatic ecosystems. Furthermore, they can have different chemical compositions, including additives with putative toxicity. Chironomus riparius is a dipteran with aquatic larvae used in toxicology tests. As a benthic organism, it can be exposed to microplastics in the water and the sediments, being able to ingest some of them depending on the size and shape. However, it is still poor knowledge of the effects that microplastics have on invertebrates, especially at the molecular level. We have analyzed the impact that 5-5.9 mu m spheres of polystyrene have on the metabolism of C. riparius, studying the transcriptional activity of eighty genes, twenty-eight described here for the first time. The genes covered the endocrine response, the detoxification mechanisms, the stress response, the DNA repairing mechanisms, hypoxia, oxidative stress, apoptosis, immunity, cholesterol metabolism, energy metabolism, the circadian rhythm, signaling, and regulation of piRNAs. The results showed that at 24 h, the stress response was the most affected, while at 48 h, the endocrine response and detoxification were slightly affected. Finally, at 72 h, endocrine response, detoxification mechanisms, and lipid metabolism genes were altered. Overall, the data suggest an acute response involving stress genes downregulation, while the later response seems to move to metabolic alterations, with changes in hormonal regulation and metabolism. It could be because micrometer microplastics are confounded with food, decreasing the availability of resources for larval development. The present work shows a dynamic impact of polystyrene microspheres and provides new putative biomarkers to analyze several mechanisms involved in the cellular and physiological response to toxicants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据