4.7 Article

Metabolites of extracellular organic matter from Microcystis and Dolichospermum drive distinct modes of carbon, nitrogen, and phosphorus recycling

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 865, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.161124

关键词

Extracellular organic matter; Microcystis; Dolichospermum; Carbon; Nitrogen; Phosphorus

向作者/读者索取更多资源

The extracellular organic matter (EOM) metabolites from Microcystis promote the recycling of carbon, nitrogen, and phosphorus by providing sufficient substrates for bacterial colonization and solubilizing non-bioavailable phosphorus. Meanwhile, the EOM metabolites from Dolichospermum fuel denitrification but are not conducive to nitrogen regeneration and retention.
Algal extracellular organic matter (EOM) metabolites exert considerable impact on the carbon (C), nitrogen (N), and phosphorus (P) cycles mediated by attached bacteria. Field investigations were conducted in two ponds to explore the relationship among EOM metabolites from Microcystis and Dolichospermum, co-occurring microbes, and nutrient recycling from April 2021 to December 2021. Microcystis blooms primarily produced more complex bound EOM (bEOM) metabolites with many amino acid components, which facilitated bacterial colonization and provided suffi-cient substrates for ammonification. Meanwhile, high abundances of dissimilatory nitrate reduction to ammonium genes from co-occurring microbes such as Rhodobacter have demonstrated their strong N retention ability. Metabolic products of bEOM from Microcystis comprise a large number of organic acids that can solubilize non-bioavailable P. All these factors have collectively resulted in the increase of all fractions of N and P, except for nitrate (NO3--N) in the water column. In contrast, the EOM metabolite from Dolichospermum was simple, coupled with high abundance of functional genes of alpha-glucosidase, and produced small molecular substances fueling denitrification. The metabolic products of EOM from Dolichospermum include abundant N-containing substances dominated by heterocyclic substances, suggesting that the metabolic products of Dolichospermum are not conducive to N regeneration and retention. Therefore, the metabolic products of EOM from Microcystis triggered a shift in the attached microbial community and function toward C, N, and P recycling with close mutual coupling. Acquisition of N and Pin Dolichospermum is dependent on itself based on N fixation and organic P hydrolysis capacity. This study provides a new understanding of the contribution of algal EOM to the nutrient cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据