4.7 Article

Identification and synergetic mechanism of TCE, H2 and O2 metabolic microorganisms in the joint H2/O2 system

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 879, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163026

关键词

Trichloroethene; Hydrogen; Oxygen; Metabolic microbes; Stable isotope probes

向作者/读者索取更多资源

In this study, the synergistic mechanism of functional microorganisms in the H2/O2 system for trichloroethene (TCE) degradation was investigated. The results showed that TCE degradation rate was significantly higher in the H2/O2 microcosm compared to other treatments. DNA-SIP technology identified various anaerobic and aerobic TCE metabolizers, as well as hydrogen-oxidizing bacteria (HOB). Methyloversatilis and SH-PL14 were found to utilize both H2 and O2 for growth and TCE metabolism.
The sole H2 and O2 usually promote chlorinated hydrocarbons (CHCs) biotransformation by several mechanisms, in-cluding reductive dechlorination and aerobic oxidation. However, the mechanism of the CHCs transformation in joint H2 and O2 system (H2/O2 system) is still unclear. In this study, the degradation kinetics of trichloroethene (TCE) were investigated and DNA stable isotope probing (DNA-SIP) were used to explore the synergistic mechanism of functional microorganisms on TCE degradation under the condition of H2/O2 coexistence. In the H2/O2 microcosm, TCE was sig-nificantly removed by 13.00 mu M within 40 days, much higher than N2, H2 and O2 microcosms, and 1,1-DCE was de-tected as an intermediate. DNA-SIP technology identified three anaerobic TCE metabolizers, five aerobic TCE metabolizers, nine hydrogen-oxidizing bacteria (HOB), some TCE metabolizers utilizing limited O2, and some anaer-obic dechlorinating bacteria reductively using H2 to dechlorinate TCE. It is also confirmed for the first time that 3 OUTs belonging to Methyloversatilis and SH-PL14 can simultaneously utilize H2 and O2 as energy sources to grow and metabolize TCE or 1,1-DCE. HOB may provide carbon sources or electron acceptors or donors for TCE biotransfor-mation. These findings confirm the coexistence of anaerobic and aerobic TCE metabolizers and degraders, which syn-ergistically promoted the conversion of TCE in the joint H2/O2 system. Our results provide more information about the functional microbe resources and synergetic mechanisms for TCE degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据