4.7 Article

Facilitated remediation of heavy metals contaminated land using Quercus spp. with different strategies: Variations in amendments and experiment periods

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 876, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.163245

关键词

Dendroremediation; Soil amendments; Cd; Zn; Long -term

向作者/读者索取更多资源

Phytoremediation using trees combined with soil amendments is a highly cost-effective technique. In a three-year field trial, various soil amendments were used to study the potential of low-accumulator and high-accumulator trees for remediating contaminated soils. Soil amendments enhanced the dendroremediation capacity of the trees over time. Overall, soil amendments effectively improved the phytoremediation efficiency of the trees in the long term.
Phytoremediation using trees combined with soil amendments has gained much attention for its highly cost-effective trait. In natural field conditions, however, the results may not reflect the true performance of amendments based on short-term laboratory studies. In this three-year field trial, various soil amendments such as rice straw biochar, palygorskite, a combined biochar of rice straw biochar and palygorskite, and hydroxyapatite were used to systematically study the potential of the low-accumulator (Quercus fabri Hance) and high-accumulator (Quercus texana Buckley) for cadmium (Cd) and zinc (Zn) to remediate severely contaminated soils. Soil amendments enhanced the dendroremediation capacity of Quercus as the growth period prolonged. In 2021, the rice straw biochar treatment increased Cd and Zn accumulation by 1.76 and 2.09 times in Q. fabri, respectively, compared to the control. Cd and Zn accumulation increased to 1.78 and 2.10 times, respectively, under combined biochar treatment for Q. texana compared to the control. Metals accumulation was mainly enhanced by soil amendments through increasing the growth biomass of Q. fabri and improving the biomass and bioconcentration ability of Q. texana. Overall, soil amendments effectively improved the phytoremediation efficiency of Quercus in the long term, and selecting suitable amendments should be fully considered in phytoremediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据