4.7 Review

Restoring estuarine ecosystems using nature-based solutions: Towards an integrated eco-engineering design guideline

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 873, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.162362

关键词

Ecological engineering; Intertidal NbS; Ecosystem restoration; Flood risk mitigation; multi-habitat restoration; Adaptation intervention

向作者/读者索取更多资源

Traditional solutions to estuarine flood risk management involve static shoreline protection structures, but Nature-based Solutions (NbS) are being considered as alternative measures. However, current NbS guidelines lack technical content bridging ecological and engineering values, focusing more on project implementation and investor frameworks. This study proposes a conceptual approach for integrating ecological and engineering aspects in estuarine ecosystems to establish NbS as self-sustaining ecosystems.
Traditional solutions to estuarine flood risk management have typically involved the implementation of static 'hard' shoreline protection structures, often at the expense of the natural landscape and the societal and ecosystem benefits they provide. In a changing climate, there is an increasing need to restore these estuarine ecosystems, and alternative measures in the form of Nature-based Solutions (NbS) are being considered. Guidance that balances ecology and engineering is required for NbS to establish as self-sustaining ecosystems. In this study, a review of NbS guidelines was undertaken, revealing an absence of technical content bridging ecological and engineering values. Instead, most guidelines focus on NbS project implementation, identifying engineering aspects, and providing frameworks for investors and project managers. Integration of technical engineering and ecological outcomes within NbS guidelines is needed. A conceptual approach for integrating eco-engineering aspects for estuarine ecosystems is proposed. This conceptual approach focuses on the critical thresholds and parameter relationships associated with establishment, growth, recovery and mortality, and functionality of estuarine NbS, in efforts to quantify changes in ecological development and flood risk mitigation services. The conceptual approach documents how the suggested relationships between parameters can be adopted by practitioners in the short-term, medium-term, and long-term. The application of this conceptual approach to multi-habitat restoration is explored, including lifecycle timing and ecosystem/design functionality. The findings of this study demonstrate the need for an integrated NbS design guideline that balances ecology and engineering research for the long-term success of estuarine ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据