4.8 Article

Mechanical nonreciprocity in a uniform composite material

期刊

SCIENCE
卷 380, 期 6641, 页码 192-198

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.adf1206

关键词

-

向作者/读者索取更多资源

We report a uniform composite hydrogel that displays substantial mechanical nonreciprocity, owing to direction-dependent buckling of embedded nanofillers. This material exhibits an asymmetric deformation when subjected to local interactions, which can induce directional motion of various objects. This material could promote the development of nonreciprocal systems for practical applications such as energy conversion and biological manipulation.
Mechanical nonreciprocity, or the asymmetric transmission of mechanical quantities between two points in space, is crucial for developing systems that can guide, damp, and control mechanical energy. We report a uniform composite hydrogel that displays substantial mechanical nonreciprocity, owing to direction-dependent buckling of embedded nanofillers. This material exhibits an elastic modulus more than 60 times higher when sheared in one direction compared with the opposite direction. Consequently, it can transform symmetric vibrations into asymmetric ones that are applicable for mass transport and energy harvest. Furthermore, it exhibits an asymmetric deformation when subjected to local interactions, which can induce directional motion of various objects, including macroscopic objects and even small living creatures. This material could promote the development of nonreciprocal systems for practical applications such as energy conversion and biological manipulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据