4.0 Article

Changes in the Surface Structure and Properties of Zirconium Upon Exposure to a Low-Energy High-Current Electron Beam

期刊

RUSSIAN PHYSICS JOURNAL
卷 65, 期 10, 页码 1650-1656

出版社

SPRINGER
DOI: 10.1007/s11182-023-02814-6

关键词

low-energy high-current electron beam; zirconium; morphology; nanohardness; wear resistance; roughness

向作者/读者索取更多资源

The results of numerical and experimental studies on the irradiation of zirconium with a low-energy high-current electron beam are presented. The simulations reveal the dynamics of surface melting and determine the thickness, lifetime, and cooling rates achieved during pulsed electron beam processing. Experimental studies show that the formation of a martensitic alpha'-phase in the melted layer increases surface nanohardness and wear resistance. The maximum value of the surface layer nanohardness obtained through the processing is twice as high as the initial value.
The results of numerical and experimental studies of zirconium irradiated by a low-energy high-current electron beam with an energy density ranging from 2.2 to 5.2 J/cm(2) are presented. The dynamics of surface melting is simulated, and the thickness and lifetime of the melt, as well as the cooling rates achieved in zirconium during pulsed electron beam processing, are determined. The structure and properties of zirconium are experimentally studied, it is shown that as a result of processing, a martensitic alpha'-phase is formed in the layer quenched from the melt. It is established that the formation of the martensitic phase increases the surface nanohardness and wear resistance. The maximum value of the surface layer nanohardness obtained by the processing is twice higher than the initial value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据