4.2 Review

Physiological Role of pH-Dependent Structural Transition in Oxygen-Evolving Complex of PSII

期刊

出版社

PLEIADES PUBLISHING INC
DOI: 10.1134/S1021443722700017

关键词

pH dependence; iron; calcium; oxygen; oxygen-evolving complex; manganese; thylakoid; photoinhibition; photosystem II

向作者/读者索取更多资源

Photosystem II (PSII) in oxygenic organisms plays a crucial role in converting light energy into molecular oxygen. The discovery of a structural transition in the catalytic center of PSII at pH 5.7 has significant implications for understanding the defense mechanisms against photoinhibition and the overall efficiency of PSII.
Photosystem II (PSII) of the photosynthetic apparatus in oxygenic organisms contains a catalytic center that performs one of the most important reactions in bioenergetics: light-dependent water oxidation to molecular oxygen. The catalytic center is a Mn4CaO5 cluster consisting of four cations of manganese and one calcium cation linked by oxygen bridges. The authors reported earlier that a structural transition occurs at pH 5.7 in the cluster resulting in changes in manganese cation(s) redox potential and elevation of the Mn-clus-ter resistance to reducing agents. The discovered effect was examined in a series of investigations that are reviewed in this work. It was found that, at pH 5.7, Fe(II) cations replace not two manganese cations as it happens at pH 6.5 but only one cation; as a result, a chimeric Mn3Fe1 cluster is produced. In the presence of exogenous calcium ions, membrane preparations of PSII with such a chimeric cluster are capable of evolving oxygen in the light (at a rate of approximately 25% of the rate in native PSII). It was found that photoinhibition that greatly depends on the processes of oxidation or reduction at pH 5.7 slows down as compared with pH 6.5. PSII preparations were also more resistant to thermal inactivation at pH 5.7 than at pH 6.5. However, in PSII preparations lacking manganese cations in the oxygen-evolving complex, the rates of photoinhibition at pH 6.5 and 5.7 did not differ. In thylakoid membranes, protonophores that abolish the proton gradient and increase pH in the lumen (where the manganese cluster is located) from 5.7 to 7.0 considerably elevated the rate of PSII photoinhibition. It is assumed that the structural transition in the Mn-cluster at pH 5.7 is involved in the mechanisms of PSII defense against photoinhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据