4.8 Article

Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2023.113197

关键词

Electrocatalysis; Nitrogen reduction reactions; Ammonia production; Heterogeneous catalysts; Ambient conditions

向作者/读者索取更多资源

Ammonia (NH3) is essential for fertilizer production and serves as a sustainable energy carrier and zero-carbon fuel. However, the current production process is unsustainable and energy-intensive. Electrochemical nitrogen reduction reactions (NRR) are promising alternatives, but still face challenges such as low Faraday efficiency and NH3 yields. This review summarizes the progress and strategies of various NRR electrocatalysts, and emphasizes the need for collaboration between theoretical and experimental studies, advanced characterization techniques, and understanding of the electrocatalytic mechanism for further development.
Ammonia (NH3) plays a significant role in fertilizer production to support the ever-increasing population and serves as a renewable energy carrier as well as a zero-carbon emission fuel. Currently, NH3 is produced by a non-sustainable and highly energy-intensive process. Among the available alternatives, the electrochemical nitrogen reduction reactions (NRR) has attracted attention due to the compact and on-site electrolytic cells that can operate from solar or wind power under ambient conditions but still suffer from relatively low Faraday efficiency and NH3 yields. For the commercialization of electrocatalytic NRR, a catalytic material demonstrating a FE-50% and an NH3 yield rate of-10-6 mol s- 1 cm -2 is suggested. Various strategies, including amorphization, structural engineering, catalyst-support interactions and hydrogen evolution suppression over catalytic mate-rials, have been presented to enhance the electrocatalytic NRR. In this review, the current progress of various identified NRR electrocatalysts (including metal carbides, nitrides, oxides, phosphides, sulfides, selenides, bo-rides, bimetallic materials, metal-organic frameworks, and metal-free materials) is summarized by collectively focusing on both theoretical analysis and experimental investigations. For further development of rational cat-alysts, a collaboration of theoretical and experimental studies, advanced characterization techniques, under-standing of the electrocatalytic mechanism, efficient screening systems, and precise detection methods are needed. Specially designed electrocatalysts can improve NRR activity by regulating the cathodic reactions. The challenges and future perspectives have been described with special emphasis on various transition metal-based electrocatalysts for N2 fixation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据