4.5 Article

Ginsenoside Rg1 treatment alleviates renal fibrosis by inhibiting the NOX4-MAPK pathway in T2DM mice

期刊

RENAL FAILURE
卷 45, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/0886022X.2023.2197075

关键词

Type 2 diabetes mellitus; diabetic kidney disease; ginsenoside Rg1; NOX4; MAPK

向作者/读者索取更多资源

Diabetic kidney disease (DKD) is a severe complication of type 2 diabetes mellitus (T2DM) that lacks effective treatment strategies. Ginsenoside Rg1 (Rg1) has been shown to improve DKD, but its mechanism is unclear. This study found that Rg1 alleviates renal injury and fibrosis by inhibiting NOX4 and MAPK signaling in T2DM-induced DKD.
Diabetic kidney disease (DKD) is a severe complication of type 2 diabetes mellitus (T2DM). However, the pathogenesis of DKD remains unclear, and effective treatment strategies are still lacking. Ginsenoside Rg1 (Rg1) has been reported to improve DKD, but the mechanism is unclear. NADPH oxidase 4 (NOX4) is an essential reactive oxygen species (ROS) source in the kidney. The mitogen-activated protein kinase (MAPK) signaling may exacerbate renal fibrosis. Therefore, we hypothesized that Rg1 might alleviate renal injury and fibrosis by inhibiting NOX4 and MAPK signaling in T2DM-induced DKD. We found that Rg1 significantly improves lipid deposition, fibrosis, and ROS production and reduces NOX4, p22phox, p47phox, p-ERK, p-JNK, and p-P38 MAPK expressions in the T2DM mice kidneys. We also found that the high-fat diet treatment in mice and the palmitate (PA) and PA + HG (high glucose) exposure in human mesangial cells could significantly induce lipid deposition, ROS production, fibrosis, and the activation of NOX4-MAPK signaling. The results suggest that high lipid and glucose may play a significant role in DKD progression, while Rg1 may attenuate renal fibrosis by inhibiting NOX4-MAPK signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据