4.5 Article

Computational investigation of the effect of reduced dynein velocity and reduced cargo diffusivity on slow axonal transport

出版社

ROYAL SOC
DOI: 10.1098/rspa.2022.0672

关键词

neuron; axon; MAP1B protein; mathematical modelling; kinesin; dynein

向作者/读者索取更多资源

The contributions of different components of slow axonal transport (SAT) were investigated using a computational model. The study focused on the anterograde motor-driven, retrograde motor-driven, and diffusion-driven components. The research found that a non-uniform distribution of protein concentration in axons requires the bidirectional nature of SAT, as solely anterograde transport cannot simulate this variation.
Contributions of three components of slow axonal transport (SAT) were studied using a computational model: the anterograde motor (kinesin)-driven component, the retrograde motor (dynein)-driven component and the diffusion-driven component. The contribution of these three components of SAT was investigated in three different segments of the axon: the proximal portion, the central portion, and the distal portion of the axon. MAP1B protein was used as a model system to study SAT because there are published experimental data reporting MAP1B distribution along the axon length and average velocity of MAP1B transport in the axon. This allows the optimization approach to be used to find values of model kinetic constants that give the best fit with published experimental data. The effects of decreasing the value of cargo diffusivity on the diffusion-driven component of SAT and decreasing the value of dynein velocity on the retrograde motor-driven component of SAT were investigated. We found that for the case when protein diffusivity and dynein velocity are very small, it is possible to obtain an analytical solution to model equations. We found that, in this case, the protein concentration in the axon is uniform. This shows that anterograde motor-driven transport alone cannot simulate a variation of cargo concentration in the axon. Most proteins are non-uniformly distributed in axons. They may exhibit, for example, an increased concentration closer to the synapse. The need to reproduce a non-uniform distribution of protein concentration may explain why SAT is bidirectional (in addition to an anterograde component, it also contains a retrograde component).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据