4.8 Article

Design strategies for the self-assembly of polyhedral shells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2219458120

关键词

nanotechnology; capsids; self-assembly; SAT

向作者/读者索取更多资源

The control over self-assembly of complex structures, particularly at the colloidal scale, has been a significant challenge in material science. The formation of amorphous aggregates often disrupts the desired assembly pathway. In this study, we investigate the self-assembly problem of three Archimedean shells using patchy particles as model building blocks. By recasting the assembly problem as a Boolean satisfiability problem, we find effective designs and selectively suppress unwanted structures.
The control over the self-assembly of complex structures is a long-standing challenge of material science, especially at the colloidal scale, as the desired assembly pathway is often kinetically derailed by the formation of amorphous aggregates. Here, we investigate in detail the problem of the self-assembly of the three Archimedean shells with five contact points per vertex, i.e., the icosahedron, the snub cube, and the snub dodecahedron. We use patchy particles with five interaction sites (or patches) as model for the building blocks and recast the assembly problem as a Boolean satisfiability problem (SAT) for the patch-patch interactions. This allows us to find effective designs for all targets and to selectively suppress unwanted structures. By tuning the geometrical arrangement and the specific interactions of the patches, we demonstrate that lowering the symmetry of the building blocks reduces the number of competing structures, which in turn can considerably increase the yield of the target structure. These results cement SAT -assembly as an invaluable tool to solve inverse design problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据