4.8 Article

Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2218987120

关键词

CO2 electroreduction; non-covalent interaction; *OH coverage; ethanol selectivity; surface-bounded hydroxyl species

向作者/读者索取更多资源

Researchers have achieved selective and productive electroreduction of carbon dioxide into ethanol using a porous CuO catalyst. They found a volcano-shaped relationship between ethanol selectivity and nanocavity size of the catalyst and identified the confinement effect associated with the nanocavity size as a key factor in enhancing ethanol selectivity.
Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 +/- 1.0% and an ethanol-to- ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 +/- 15.0 mA cm(-2), in addition to an extraordinary FE of 90.6 +/- 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据