4.8 Article

Transcranial magnetic stimulation to frontal but not occipital cortex disrupts endogenous attention

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2219635120

关键词

visual attention; contrast sensitivity; TMS; occipital cortex; frontal cortex

向作者/读者索取更多资源

This study investigates the causal role of rFEF+ and V1/V2 in endogenous attention using transcranial magnetic stimulation (TMS). The results show that early visual areas do not modulate endogenous attention, while rFEF+ plays a critical role in this process.
Covert endogenous (voluntary) attention improves visual performance. Human neuroimaging studies suggest that the putative human homolog of macaque frontal eye fields (FEF+) is critical for this improvement, whereas early visual areas are not. Yet, correlational MRI methods do not manipulate brain function. We investigated whether rFEF+ or V1/V2 plays a causal role in endogenous attention. We used transcranial magnetic stimulation (TMS) to alter activity in the visual cortex or rFEF+ when observers performed an orientation discrimination task while attention was manipulated. On every trial, they received double-pulse TMS at a predetermined site (stimulated region) around V1/V2 or rFEF+. Two cortically magnified gratings were presented, one in the stimulated region (contralateral to the stimulated area) and another in the symmetric (ipsilateral) nonstimulated region. Grating contrast was varied to measure contrast response functions (CRFs) for all attention and stimulation combinations. In experiment 1, the CRFs were similar at the stimulated and nonstimulated regions, indicating that early visual areas do not modulate endogenous attention during stimulus presentation. In contrast, occipital TMS eliminates exogenous (involuntary) attention effects on performance [A. Fernandez, M. Carrasco, Curr. Biol. 30, 4078-4084 (2020)]. In experiment 2, rFEF+ stimulation decreased the overall attentional effect; neither benefits at the attended location nor costs at the unattended location were significant. The frequency and directionality of microsaccades mimicked this pattern: Whereas occipital stimulation did not affect microsaccades, rFEF+ stimulation caused a higher microsaccade rate directed toward the stimulated hemifield. These results provide causal evidence of the role of this frontal region for endogenous attention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据