4.4 Article

Comparative study of ignition characteristics and engine performance of RP-3 kerosene and diesel under compression ignition condition

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544070221146349

关键词

Aviation kerosene; injection pressure; nozzle diameter; ignition characteristics; engine performance

向作者/读者索取更多资源

This study aims to explore the characteristics of spontaneous combustion and engine performance of kerosene in traditional compression ignition mode, providing a reference for optimizing kerosene compression ignition engines and advanced combustion mode. Ignition visualization tests of kerosene under marine and vehicle engine conditions were conducted, comparing the characteristics with diesel under 0.3 mm nozzle diameter. Then, the engine performance of both fuels under medium load and ultra-high injection pressures was compared. The results show that kerosene and diesel have similar ignition and combustion characteristics, indicating the universality of kerosene in diesel engine application. Kerosene has a longer ignition delay time, resulting in delayed combustion and heat release. Compared to diesel, kerosene has lower CO, particulate emissions, and indicated thermal efficiency, while higher HC and NOx emissions. The emission characteristics of kerosene RP-3 differ from previous studies, especially under ultra-high injection pressure. The combustion process and engine emissions of kerosene can be optimized with advanced combustion models and strategies.
This paper aims to explore the spontaneous combustion characteristics and engine performance of kerosene under traditional compression ignition mode, providing a reference for further optimizing the performance of kerosene compression ignition engines and the application of advanced combustion mode. The ignition visualization tests of kerosene under marine and vehicle engine conditions are carried out, and the characteristics under 0.3 mm nozzle diameter are compared with that of diesel. Then, the engine performance of the two fuels under medium load and ultra-high injection pressures is compared. The experimental results show that the ignition and combustion characteristics of kerosene and diesel are very similar, indicating that kerosene has a strong universality in diesel engine application. The long ignition delay time of kerosene leads to its lagging combustion and heat release. Compared with diesel, kerosene has lower CO, particulate emissions and indicated thermal efficiency, while higher HC and NOx emissions. The emission characteristics of kerosene RP-3 are different from previous studies, especially under ultra-high injection pressure. The combustion process and engine emissions of kerosene may be optimized with advanced combustion models and strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据