4.4 Article

Model based integrated control strategy for effective brake energy recovery to extend battery longevity in electric two wheelers

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544070231167616

关键词

Regenerative braking; regenerative braking control strategy; Fuzzy Logic; PID; state of charge; electric vehicles; battery range

向作者/读者索取更多资源

This study aims to achieve optimal regenerative braking performance for a BLDC electric machine with peak torque of 10 Nm in electric two-wheelers by comparing control algorithms based on Direct Look-up table, Fuzzy Logic, and their combination with PID control. MATLAB Simulink is used to design the whole vehicle model and energy recovery control strategies. WLTP Class 2 and NYCC standard drive cycles are implemented for vehicle simulation, and two live-recorded driving patterns are used to validate the model. The Fuzzy PID control strategy exhibits the most optimal gains in terms of energy recovery, providing a significant increase in battery SOC levels compared to a non-regenerative braking-based system.
This study aims to achieve optimal regenerative braking performance in the form of a reduced decline in battery SOC for a BLDC electric machine with peak torque of 10 Nm for use in electric two-wheelers. This is conducted via a comparison of control algorithms based on Direct Look-up table, Fuzzy Logic and their combination with PID control. The whole vehicle model and the energy recovery control strategies are designed using MATLAB Simulink by benchmarking the design with the parameters of the Ola Electric S1. A physical motor-dynamometer test bench is utilised to obtain a complete motor operating range to derive a realistic efficiency map that is used in the model. WLTP Class 2 and NYCC standard drive cycles are implemented for vehicle simulation. Two live-recorded driving patterns are also used to validate the model to analyse the adaptability of the control strategies. After obtaining the required motor speed, torque values and the range by matching the theoretical drive cycle profile, the control strategy is further optimised using the PID auto-tuning toolbox in Simulink. Using physical testbench data, the effect of various regenerative braking control strategies on overall vehicle performance is more accurately realised. The Fuzzy PID control strategy exhibits the most optimal gains in terms of energy recovery for electric two-wheelers, allowing for the highest battery SOC levels of 41.88% and average motor regenerative torque of 7.25 Nm for the standard drive cycles. An analogous trend is observed for the on-road driving pattern as Fuzzy PID provides highest battery SOC and average motor regenerative torque of 48.34% and 7.5 Nm respectively. For the driving scenarios aforementioned, this provides a 17% and 44% increase in SOC respectively when compared to a non-regenerative braking-based system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据