4.7 Article

Characteristics of segmental dynamics in EP/TiO2 nanocomposites and its effect on dielectric breakdown

期刊

POLYMER
卷 270, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2023.125758

关键词

Epoxy nanocomposites; Segmental dynamics; DC breakdown

向作者/读者索取更多资源

This study investigates the molecular dynamics and macro-dielectric performances of epoxy nanocomposites. It is found that EP/TiO2 nanocomposites with optimized filler content exhibit improved mechanical, thermal and dielectric properties. The DC breakdown strength of the nanocomposites initially increases and then decreases with temperature, while also significantly decreasing overall.
Epoxy nanocomposites with excellent mechanical, thermal and dielectric properties have potential applications in electrical and power electronic devices. However, due to the complex structure of the interfacial region in nanocomposites, molecular dynamic characteristics and how they relate to macro-dielectric performances still needs to be investigated. In this study, several kinds of epoxy nanocomposites were prepared. Segmental dy-namics and charge migration parameters are characterised by a dielectric spectroscopy using the Havri-liak-Negami equation. The DC breakdown strength of EP/TiO2 nanocomposites was tested for temperature values between 403 and 433 K, and the influence of segmental dynamic characteristics on DC breakdown was discussed. The results indicate that EP/TiO2 nanocomposites with optimised filler content (0.5 wt%) have lower values of dielectric relaxation strength, characteristic relaxation time and thermal expansion coefficients than other samples and that segment dynamics and charge transport processes are suppressed by nanoparticle incorporation. The DC breakdown strength of EP/TiO2 nanocomposites with filler content initially increases and then decreases at a certain temperature, while it significantly decreases with temperature. Correlation analysis indicates that DC breakdown above the glass transition temperature is dominated by segmental dynamics rather than carrier transport. Owing to the tight bond between the nanoparticle and the epoxy matrix, segmental dy-namics are impeded when the proper contents of nanoparticles is incorporated, resulting in a decrease in the free -volume fraction and an increase in DC breakdown strength. However, when the temperature rises, the free volume in the intersection of segments expands due to thermal stimulation and free electrons gain sufficient energy in the free length to trigger DC breakdown, hence DC breakdown strength decreases with temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据