4.6 Article

Probing microstructural changes in muscles of leptin-deficient zebrafish by non-invasive ex-vivo magnetic resonance microimaging

期刊

PLOS ONE
卷 18, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0284215

关键词

-

向作者/读者索取更多资源

This study used non-invasive magnetic resonance imaging techniques to reveal significant fat infiltration and microstructural changes in the muscles of leptin-deficient zebrafish, leading to muscle wasting.
Leptin is a hormone that plays a key role in controlling food intake and energy homeostasis. Skeletal muscle is an important target for leptin and recent studies have shown that leptin deficiency may lead to muscular atrophy. However, leptin deficiency-induced structural changes in muscles are poorly understood. The zebrafish has emerged as an excellent model organism for studies of vertebrate diseases and hormone response mechanisms. In this study, we explored ex-vivo magnetic resonance microimaging (& mu;MRI) methods to non-invasively assess muscle wasting in leptin-deficient (lepb(-/-)) zebrafish model. The fat mapping performed by using chemical shift selective imaging shows significant fat infiltration in muscles of lepb(-/-) zebrafish compared to control zebrafish. T-2 relaxation measurements show considerably longer T-2 values in the muscle of lepb(-/-) zebrafish. Multiexponential T-2 analysis detected a significantly higher value and magnitude of long T-2 component in the muscles of lepb(-/-) as compared to control zebrafish. For further zooming into the microstructural changes, we applied diffusion-weighted MRI. The results show a significant decrease in the apparent diffusion coefficient indicating increased constraints of molecular movements within the muscle regions of lepb(-/-) zebrafish. The use of the phasor transformation for the separation of diffusion-weighted decay signals showed a bi-component diffusion system which allows us to estimate each fraction on a voxel-wise basis. A substantial difference was found between the ratio of two components in lepb(-/-) and control zebrafish muscles, indicating alterations in diffusion behavior associated with the tissue microstructural changes in muscles of lepb(-/-) zebrafish as compared to control zebrafish. Taken together, our results demonstrate that the muscles of lepb(-/-) zebrafish undergo significant fat infiltration and microstructural changes leading to muscle wasting. This study also demonstrates that & mu;MRI provides excellent means to non-invasively study the microstructural changes in the muscles of the zebrafish model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据