4.6 Article

Features extracted using tensor decomposition reflect the biological features of the temporal patterns of human blood multimodal metabolome

期刊

PLOS ONE
卷 18, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0281594

关键词

-

向作者/读者索取更多资源

High-throughput omics technologies allow for the profiling of entire biological systems. In this study, tensor decomposition was applied to a dataset of blood molecule concentrations to extract features in a non-biased manner without the need for hypothesis generation. The results showed that tensor decomposition can extract similar features obtained by hypothesis-driven analysis, but with a shorter processing time.
High-throughput omics technologies have enabled the profiling of entire biological systems. For the biological interpretation of such omics data, two analyses, hypothesis- and data-driven analyses including tensor decomposition, have been used. Both analyses have their own advantages and disadvantages and are mutually complementary; however, a direct comparison of these two analyses for omics data is poorly examined.We applied tensor decomposition (TD) to a dataset representing changes in the concentrations of 562 blood molecules at 14 time points in 20 healthy human subjects after ingestion of 75 g oral glucose. We characterized each molecule by individual dependence (constant or variable) and time dependence (later peak or early peak). Three of the four features extracted by TD were characterized by our previous hypothesis-driven study, indicating that TD can extract some of the same features obtained by hypothesis-driven analysis in a non-biased manner. In contrast to the years taken for our previous hypothesis-driven analysis, the data-driven analysis in this study took days, indicating that TD can extract biological features in a non-biased manner without the time-consuming process of hypothesis generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据