4.6 Article

Expanded characterization of in vitro polarized M0, M1, and M2 human monocyte-derived macrophages: Bioenergetic and secreted mediator profiles

期刊

PLOS ONE
卷 18, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0279037

关键词

-

向作者/读者索取更多资源

Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics used to phenotype these cells. Bioenergetics, including ATP generation and cytokine profile, are important factors in determining the phenotypes of human monocyte-derived macrophage (hMDM) models. This study expands the phenotype characterization of naive hMDMs, M1, and M2 subsets by measuring bioenergetic outcomes and an expanded cytokine profile, providing valuable insights into respiratory macrophage subtypes.
Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract, posing a challenge to in vitro macrophage model systems. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics that are typically independently measured to phenotype these cells. Bioenergetics is emerging as a key central regulator of macrophage function and phenotype but is often not included in the characterization of human monocyte-derived macrophage (hMDM) models. The objective of this study was to expand the phenotype characterization of naive hMDMs, and their M1 and M2 subsets by measuring cellular bioenergetic outcomes and including an expanded cytokine profile. Known markers of M0, M1 and M2 phenotypes were also measured and integrated into the phenotype characterization. Peripheral blood monocytes from healthy volunteers were differentiated into hMDM and polarized with either IFN-gamma + LPS (M1) or IL-4 (M2). As expected, our M0, M1, and M2 hMDMs exhibited cell surface marker, phagocytosis, and gene expression profiles indicative of their different phenotypes. M2 hMDMs however were uniquely characterized and different from M1 hMDMs by being preferentially dependent on oxidativte phosphorylation for their ATP generation and by secreting a distinct cluster of soluble mediators (MCP4, MDC, and TARC). In contrast, M1 hMDMs secreted prototypic pro-inflammatory cytokines (MCP1, eotaxin, eotaxin-3, IL12p70, IL-1 alpha, IL15, TNF-beta, IL-6, TNF-alpha, IL12p40, IL-13, and IL-2), but demonstrated a relatively constitutively heightened bioenergetic state, and relied on glycolysis for ATP generation. These data are similar to the bioenergetic profiles we previously observed in vivo in sputum (M1) and BAL (M2)-derived macrophages in healthy volunteers, supporting the notion that polarized hMDMs can provide an acceptable in vitro model to study specific human respiratory macrophage subtypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据