4.6 Article

Water temperature dynamics in a headwater forest stream: Contrasting climatic, anthropic and geological conditions create thermal mosaic of aquatic habitats

期刊

PLOS ONE
卷 18, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0281096

关键词

-

向作者/读者索取更多资源

This study investigated the surface and hyporheic water temperature in a small headwater stream and explored the effects of different environmental contexts. The results showed that human activities and geological features significantly influenced the thermal regime of streams, while solar radiation had a smaller impact on the hyporheic thermal regime. The temperature of hyporheic water had a delay and decrease compared to surface water, creating a mosaic of thermal habitats that could be utilized for river biodiversity preservation and restoration.
The thermal regime of streams is a relevant driver of their ecological functioning. As this regime is presently submitted to numerous alterations (among others, impoundments, and climate change), it seems important to study both their effects and potential recovery from the latter. Thus, we investigated the surface and hyporheic water temperature along a small headwater stream with contrasting environmental contexts: forest landscape, open grassland landscape without riparian vegetation, several artificial run-of-the-river impoundments and one discharge point of a by-pass impoundment. The main objectives were to study the influence of these contrasting contexts on surface and subsurface water temperature at a local scale. Contrasting contexts were supposed to create effects on both surface and hyporheic thermal regimes at a local scale. Differences of thermal regimes between surface and hyporheos were expected, as well as between geological contexts. Sensors located at multiple stations allowed monitoring of stream and hyporheos temperature along the stream, while comparison with adjacent reference stream allowed for surface water thermal regime benchmark. Impoundments and landscapes significantly influenced stream thermal regime at a local scale (impoundments created up to +3.7 degrees C temperature increase in average). Their effect on hyporheos thermal regime was less marked than the ones generated by solar radiation or geological features. Hyporheos thermal regime varies from stream one by temperature dynamics delay (up to 18h) and decrease (up to -7 degrees C between surface and hyporheos temperature in average). These coupled effects create a mosaic of thermal habitats, which could be used for river biodiversity preservation and restoration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据