4.4 Review

SK channels and calmodulin

期刊

CHANNELS
卷 10, 期 1, 页码 1-6

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19336950.2015.1029688

关键词

curing; calmodulin; Ca2+-gating; E-F hands; intrinsic subunit; Paramecium; SK channel

资金

  1. NIH

向作者/读者索取更多资源

Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca2+ levels. Mirroring the importance and the breadth of Ca2+ signaling, free Ca2+ levels are tightly controlled, and a myriad of Ca2+ binding proteins transduce Ca2+ signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca2+ binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca2+ ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca2+-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据