4.6 Article

Comparing end-effector position and joint angle feedback for online robotic limb tracking

期刊

PLOS ONE
卷 18, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0286566

关键词

-

向作者/读者索取更多资源

This study compared two different supplementary feedback contents, encoding the Cartesian coordinates of the end-effector of the robotic arm (Task-space feedback) and encoding the robot joints angles (Joint-space feedback), delivered to blindfolded participants through vibrotactile stimulation applied on participants' leg. The results showed that Task-space feedback was more accurate and suitable for activities with short training sessions, while Joint-space feedback showed potential for long-term improvement and applications requiring long training.
Somatosensation greatly increases the ability to control our natural body. This suggests that supplementing vision with haptic sensory feedback would also be helpful when a user aims at controlling a robotic arm proficiently. However, whether the position of the robot and its continuous update should be coded in a extrinsic or intrinsic reference frame is not known. Here we compared two different supplementary feedback contents concerning the status of a robotic limb in 2-DoFs configuration: one encoding the Cartesian coordinates of the end-effector of the robotic arm (i.e., Task-space feedback) and another and encoding the robot joints angles (i.e., Joint-space feedback). Feedback was delivered to blindfolded participants through vibrotactile stimulation applied on participants' leg. After a 1.5-hour training with both feedbacks, participants were significantly more accurate with Task compared to Joint-space feedback, as shown by lower position and aiming errors, albeit not faster (i.e., similar onset delay). However, learning index during training was significantly higher in Joint space feedback compared to Task-space feedback. These results suggest that Task-space feedback is probably more intuitive and more suited for activities which require short training sessions, while Joint space feedback showed potential for long-term improvement. We speculate that the latter, despite performing worse in the present work, might be ultimately more suited for applications requiring long training, such as the control of supernumerary robotic limbs for surgical robotics, heavy industrial manufacturing, or more generally, in the context of human movement augmentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据