4.6 Article

Monkeypox detection from skin lesion images using an amalgamation of CNN models aided with Beta function-based normalization scheme

期刊

PLOS ONE
卷 18, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0281815

关键词

-

向作者/读者索取更多资源

We have observed the healing process of our society from the impact of COVID-19. The prevention of future pandemics requires appropriate protocols and methodologies to efficiently deal with outbreaks. This paper proposes an ensemble learning-based framework for the early detection of Monkeypox virus from skin lesion images. The framework achieves high accuracy, precision, recall, and F1 scores, making it effective in identifying the presence of Monkeypox.
We have recently been witnessing that our society is starting to heal from the impacts of COVID-19. The economic, social and cultural impacts of a pandemic cannot be ignored and we should be properly equipped to deal with similar situations in future. Recently, Monkeypox has been concerning the international health community with its lethal impacts for a probable pandemic. In such situations, having appropriate protocols and methodologies to deal with the outbreak efficiently is of paramount interest to the world. Early diagnosis and treatment stand as the only viable option to tackle such problems. To this end, in this paper, we propose an ensemble learning-based framework to detect the presence of the Monkeypox virus from skin lesion images. We first consider three pre-trained base learners, namely Inception V3, Xception and DenseNet169 to fine-tune on a target Monkeypox dataset. Further, we extract probabilities from these deep models to feed into the ensemble framework. To combine the outcomes, we propose a Beta function-based normalization scheme of probabilities to learn an efficient aggregation of complementary information obtained from the base learners followed by the sum rule-based ensemble. The framework is extensively evaluated on a publicly available Monkeypox skin lesion dataset using a five-fold cross-validation setup to evaluate its effectiveness. The model achieves an average of 93.39%, 88.91%, 96.78% and 92.35% accuracy, precision, recall and F1 scores, respectively. The supporting source codes are presented in https://github.com/BihanBanerjee/MonkeyPox

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据