4.6 Article

Reliability of double probe measurements in nanodusty plasmas

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6595/acbcef

关键词

double probe; dusty plasma; nanoparticles; electronegativity; elevated electron temperature

向作者/读者索取更多资源

Nonthermal plasmas are attractive for nanoparticles synthesis, but their plasma properties are difficult to assess due to the reactive environment and high nanoparticle concentrations. In this study, we use a floating double probe to measure the plasma properties of an argon:silane plasma. We find that the electron temperatures increase unexpectedly with increasing silane mole fraction.
Nonthermal plasmas are attractive sources for nanoparticles synthesis, however, their plasma properties are notoriously difficult to assess due to the chemically reactive environment and high nanoparticle concentrations. Here, we are using a floating double probe to measure the plasma properties of a nanoparticle-forming argon:silane plasma. We demonstrate good stability of current-voltage characteristics over several minutes of operation. However, unexpectedly larger electron temperatures are measured with increasing the silane mole fraction. To test the validity of these results, we developed a zero-dimensional global model to investigate the effect of the presence of nanoparticles on the plasma properties. Using this model, we show that increasing particle concentration leads to an increasing electronegativity of the plasma, causing an increase of the reduced electric field. However, this causes only a moderate increase in mean electron energy, in contrast to the much larger increase measured by the double probe. We argue that these large electron temperatures are based on the fact that a double probe measures an 'apparent' electron temperature, which is defined by the negative inverse slope of the logarithm of the electron energy probability function (EEPF) at an energy corresponding to the probe's floating potential. As the silane mole fraction is increased, the plasma becomes more electronegative and the probe's floating potential moves closer to the plasma potential. Combined with the strong non-Maxwellian EEPF, this leads to the large apparent electron temperatures obtained by the probe. Thus, the apparent electron temperatures measured with the double probe do not follow the trends in mean electron energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据