4.8 Review

Rock, scissors, paper: How RNA structure informs function

期刊

PLANT CELL
卷 -, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/plcell/koad026

关键词

-

向作者/读者索取更多资源

RNA can adopt a wide range of structures through self-folding, ranging from simple hairpins to complex 3D structures, and can interact with metabolites and macromolecules for regulatory purposes. Recent years have seen the elucidation of various RNA structures, including tRNAs, ribozymes, riboswitches, ribosomes, splicesomes, and the complete RNA structuromes. These advances have deepened our understanding of fundamental biological processes and their structure-dependent responses to environmental signals.
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据