4.3 Article

Genome-wide identification and functional analysis of denitrosylases (S-nitrosoglutathione reductases and NADPH-dependent thioredoxin reductases) in Brassica juncea

期刊

PLANT BIOTECHNOLOGY REPORTS
卷 17, 期 4, 页码 541-559

出版社

SPRINGER
DOI: 10.1007/s11816-023-00831-y

关键词

S-nitrosoglutathione reductase; TRX-NTR; In silico analysis; Denitrosylation; Brassica juncea; Plant development

向作者/读者索取更多资源

S-nitrosylation is a known post-translational modification that regulates nitric oxide-dependent cell signaling. NADH-dependent S-nitrosoglutathione reductase (GSNOR) and NADPH-dependent thioredoxin reductase (NTR) enzymes play important roles in maintaining nitric oxide/S-nitrosothiol (NO/SNO) homeostasis. The identification and analysis of GSNOR and NTR genes in Brassica juncea revealed their structural characteristics, evolutionary relationships, and subcellular localizations. Additionally, their activities were found to be regulated by light and plant hormones, and showed differential patterns in various tissues and developmental stages.
S-nitrosylation is a well-known post-translational modification that modulates nitric oxide-dependent cell signaling. NADH-dependent S-nitrosoglutathione reductase (GSNOR) and NADPH-dependent thioredoxin reductase (NTR) enzymes are essential for nitric oxide/S-nitrosothiol (NO/SNO) homeostasis. GSNOR and NTR regulate denitrosylation by reducing S-nitrosoglutathione (GSNO) and thioredoxins, respectively. Genome-wide identification yielded 4 GSNOR and 12 NTR (4 each of NTRA, NTRB, and NTRC) genes in Brassica juncea. Syntenic relationship showed whole genome triplication (WGT) and tandem duplications. The phylogenetic analysis revealed clustering of BjGSNORs and BjNTRs with Arabidopsis homologs suggesting high sequence similarity within groups. Subcellular localization prediction suggested BjGSNOR localizes not only to the cytosol, but also to the Golgi apparatus and endoplasmic reticulum. BjNTRA and BjNTRB were localized in the cytoplasm and mitochondria, respectively, whereas BjNTRC localized in the chloroplast and nucleus. Several cis-acting elements involved in light responsiveness and expression analysis suggested the regulation of denitrosylation by light. The analysis of the promoter region also showed various phytohormone-regulated elements, suggesting the involvement of these enzymes in plant growth. Furthermore, GSNOR and NTR activities were higher in early growth stages. Differential spatial distributions of both the enzymes were observed with higher activity in hypocotyl in comparison with roots and cotyledons of the seedling. In flower, the highest activities were observed in carpel and least in stamens. Collectively, these findings provide an understanding of the structure, localization, and evolution of multiple copies of denitrosylases BjGSNOR and BjNTR, along with their possible roles in plant development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据