4.7 Article

Integrated transcriptome and proteome analysis provides new insights into camptothecin biosynthesis and regulation in Camptotheca acuminata

期刊

PHYSIOLOGIA PLANTARUM
卷 175, 期 3, 页码 -

出版社

WILEY
DOI: 10.1111/ppl.13916

关键词

-

向作者/读者索取更多资源

This study investigated the biosynthesis mechanism of the anti-cancer agent camptothecin through the use of multiomics methods. Key genes and proteins were identified, providing important insights for future development of cancer therapies and synthetic biology approaches.
Camptotheca acuminata Decne., the main source of camptothecin (CPT), has received increasing attention for its remarkable antitumor activity. Many CPT derivatives are clinically used as effective anticancer agents worldwide. However, their biosynthesis mechanism remains unclear, and uncovering this pathway would greatly facilitate development of alternative CPT production methods to replace current inefficient plant-derived ones. The expression of >30,000 genes was accurately quantified using unique molecular identifier RNA sequencing in 10 C. acuminata tissues, and 7854 proteins from five tissues were quantified with label-free quantitative proteomics. Fifteen full-length transcriptomes were sequenced with long-read Oxford Nanopore Technologies, and 5692 alternative splicing events were discovered among 4746 genes. Integrated transcriptome and proteome analysis provided novel insights into CPT biosynthesis and its hierarchical regulation. Five cytochrome P450s and three O-methyltransferases were considered as candidates involved in the biosynthesis of CPT and its derivatives, while 15 transcription factors potentially regulating CPT biosynthesis were screened. These findings provide important clues for elucidating the biosynthetic mechanisms of CPT and its derivatives and substantially contribute to the future production of these anticancer agents with synthetic biology. The generated large-scale multiomics data also provide valuable resources for investigating the functional genomics of the most important CPT-producing plant species-C. acuminata.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据