4.7 Article

Scaling and similarity laws in three-dimensional wall jets

期刊

PHYSICS OF FLUIDS
卷 35, 期 7, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0140671

关键词

-

向作者/读者索取更多资源

Wall jets are commonly seen in various technological and scientific contexts. This article focuses on the scaling laws and self-similar profiles of three-dimensional wall jets in high-Reynolds-number limit. The derived scaling laws are tested on numerical and experimental data of film cooling devices. The results show that the velocity defect and Reynolds stress can be described by the scaling laws.
Wall jets appear in many situations of technological and scientific interest. In gas turbines, flows produced by the film as well as impingement cooling devices are three-dimensional wall jets. High-lift devices produce flows that can easily be represented by two-dimensional wall jets. It has been known for a long time that wall jets in both stagnant and moving environments display a layered structure and only partially obey similarity laws. In this paper, we derive scaling laws and obtain self-similar velocity defect and Reynolds stress profiles for the outer part of three-dimensional wall jets in the high-Reynolds-number limit. The scaling laws are derived from prime principles under realistic assumptions about the behavior of the flow. We show that the leading term in an expansion of the turbulent kinetic energy (TKE) as a series of powers of the distance from the source must scale like the transversal velocity causing the jet to spread laterally. Only the second term in the TKE expansion is shown to scale like the square of the velocity defect. The scaling laws are tested on numerical and experimental data representing two commonly used film cooling devices. (C) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据