4.7 Article

How microplastics are transported and deposited in realistic upper airways?

期刊

PHYSICS OF FLUIDS
卷 35, 期 6, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0150703

关键词

-

向作者/读者索取更多资源

This study focuses on the analysis of microplastic transport and deposition in the upper lung airways. The findings reveal that the shape and size of microplastics, as well as the morphology of the airways, significantly influence the flow fields and deposition patterns. The research provides valuable insights into the understanding of microplastic transport in airways and can contribute to future therapeutics development.
Microplastics are tiny plastic debris in the environment from industrial processes, various consumer items, and the breakdown of industrial waste. Recently, microplastics have been found for the first time in the airways, which increases the concern about long-term exposure and corresponding impacts on respiratory health. To date, a precise understanding of the microplastic transport to the airways is missing in the literature. Therefore, this first-ever study aims to analyze the microplastic transport and deposition within the upper lung airways. A computational fluid dynamics-discrete phase model approach is used to analyze the fluid flow and microplastic transport in airways. The sphericity concept and shape factor values are used to define the non-spherical microplastics. An accurate mesh test is performed for the computational mesh. The numerical results report that the highly asymmetric and complex morphology of the upper airway influences the flow fields and microplastic motion along with the flow rate and microplastic shape. The nasal cavity, mouth-throat, and trachea have high pressure, while a high flow velocity is observed at the area after passing the trachea. The flow rates, shape, and size of microplastics influence the overall deposition pattern. A higher flow rate leads to a lower deposition efficiency for all microplastic shapes. The nasal cavity has a high deposition rate compared to other regions. The microplastic deposition hot spot is calculated for shape and size-specific microplastic at various flow conditions. The findings of this study and more case-specific analysis will improve the knowledge of microplastic transport in airways and benefit future therapeutics development. The future study will be focused on the effect of various microplastic shapes on the human lung airways under the healthy and diseased airways conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据