4.7 Article

Effect of inter-pore interference on liquid evaporation rates from nanopores by direct simulation Monte Carlo

期刊

PHYSICS OF FLUIDS
卷 35, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0140377

关键词

-

向作者/读者索取更多资源

This study reports a novel investigation of the inter-pore interference effect in nano-porous evaporation, elucidating the changes in the net evaporation rate from individual nanopores when the inter-pore distance, neighboring nanopore diameter, or liquid temperature were varied. Molecular simulation results reveal that reducing inter-pore distance can enhance evaporation rate by increasing vapor convection effect and suppressing condensation flux. This interference effect is more pronounced at lower evaporation intensity, with the evaporation flux differing by up to 25% from the one-dimensional case.
Liquid evaporation from micro/nanoscale pores is widely encountered in cutting-edge technologies and applications. Due to its two- or three-dimensional features, the nano-porous evaporation is less understood compared to the one-dimensional evaporation of a planar liquid surface. This paper reported a novel study of the inter-pore interference effect in nano-porous evaporation, clarifying the variation in the net evaporation rate from individual nanopores when the inter-pore distance, neighboring nanopore diameter, or liquid temperature were changed. Molecular simulation results showed that the reduction in inter-pore distance could enhance the evaporation rate from nanopores by augmenting the vapor convection effect and suppressing the condensation flux. This interference effect was more pronounced at lower evaporation intensity with the evaporation flux being different by up to 25% from the one-dimensional case. The inter-pore interference was equally observed for Knudsen numbers of 0.1 and 10. Additionally, the non-uniformity in nanopore size distribution had no influence on the evaporative mass flux within the present parameter range. The non-uniformity in nanopore temperatures, however, could affect the net evaporation from individual nanopores, similarly by modulating the vapor convection magnitude in adjacent to the interface and the condensation flux. The effect of inter-pore interference is found to be essential at low evaporation intensity, which is highly relevant in industrial applications such as water evaporation under atmospheric pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据