4.7 Article

Log-law recovery through reinforcement-learning wall model for large eddy simulation

期刊

PHYSICS OF FLUIDS
卷 35, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0147570

关键词

-

向作者/读者索取更多资源

This paper focuses on the use of reinforcement learning (RL) for near-wall turbulence modeling. A new RL wall model (WM) called VYBA23 is developed, which uses agents dispersed in the flow near the wall. The model is trained on a single Reynolds number and does not rely on high-fidelity data. The results show potential for developing RLWMs that can recover physical laws and for extending this type of ML models to more complex flows in the future.
This paper focuses on the use of reinforcement learning (RL) as a machine-learning (ML) modeling tool for near-wall turbulence. RL has demonstrated its effectiveness in solving high-dimensional problems, especially in domains such as games. Despite its potential, RL is still not widely used for turbulence modeling and is primarily used for flow control and optimization purposes. A new RL wall model (WM) called VYBA23 is developed in this work, which uses agents dispersed in the flow near the wall. The model is trained on a single Reynolds number ( Re-t = 10(4)) and does not rely on high-fidelity data, as the backpropagation process is based on a reward rather than an output error. The states of the RLWM, which are the representation of the environment by the agents, are normalized to remove dependence on the Reynolds number. The model is tested and compared to another RLWM (BK22) and to an equilibrium wall model, in a half-channel flow at eleven different Reynolds numbers { Re-t ? [ 180 ; 10(10) ]}. The effects of varying agents' parameters, such as actions range, time step, and spacing, are also studied. The results are promising, showing little effect on the average flow field but some effect on wall-shear stress fluctuations and velocity fluctuations. This work offers positive prospects for developing RLWMs that can recover physical laws and for extending this type of ML models to more complex flows in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据