4.7 Article

Nature of the doubly-charmed tetraquark T+cc in a constituent quark model

期刊

PHYSICS LETTERS B
卷 841, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.physletb.2023.137918

关键词

Potential models; Quark models; Coupled-channels calculation

向作者/读者索取更多资源

The recently discovered T-cc(+) is evaluated as a DD* molecular structure in the J(P) = 1(+) sector. A coupled-channels calculation in charged basis, considering the (DD)-D-0*(+), D+D*(0) and D*D-0*(+) channels, is done in the framework of a constituent quark model that successfully described other molecular candidates in the charmonium spectrum such as the X(3872). The T-cc(+) is found as a (DD)-D-0*(+) molecule (87%) with a binding energy of 387 keV/c(2) and a width of 81 keV, in agreement with the experimental measurements. The quark content of the state forces the inclusion of exchange diagrams to treat indistinguishable quarks between the D mesons, which are found to be essential to bind the molecule. The (DD0)-D-0 pi(+) line shape, scattering lengths and effective ranges of the molecule are also analyzed, which are found to be in agreement with the LHCb analysis. We search for further partners of the T-cc(+) in other charm and bottom sectors, finding different candidates. In particular, in the charm sector we find a shallow J(P) = 1(+) D+D*(0) molecule (83%), dubbed T'(cc), just 1.8 MeV above the T-cc(+) state. In the bottom sector, we find an isoscalar and an isovector J(P) = 1(+) bottom partners, as BB* molecules lying 21.9 MeV/c(2) (I = 0) and 10.5 MeV/c(2) (I = 1), respectively, below the (BB)-B-0*(+) threshold. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The recently discovered T-cc(+) is evaluated as a DD* molecular structure in the J(P) = 1(+) sector. A coupled-channels calculation in charged basis, considering the (DD)-D-0*(+), D+D*(0) and D*D-0*(+) channels, is done in the framework of a constituent quark model that successfully described other molecular candidates in the charmonium spectrum such as the X(3872). The T-cc(+) is found as a (DD)-D-0*(+) molecule (87%) with a binding energy of 387 keV/c(2) and a width of 81 keV, in agreement with the experimental measurements. The quark content of the state forces the inclusion of exchange diagrams to treat indistinguishable quarks between the D mesons, which are found to be essential to bind the molecule. The (DD0)-D-0 pi(+) line shape, scattering lengths and effective ranges of the molecule are also analyzed, which are found to be in agreement with the LHCb analysis. We search for further partners of the T-cc(+) in other charm and bottom sectors, finding different candidates. In particular, in the charm sector we find a shallow J(P) = 1(+) D+D*(0) molecule (83%), dubbed T'(cc), just 1.8 MeV above the T-cc(+) state. In the bottom sector, we find an isoscalar and an isovector J(P) = 1(+) bottom partners, as BB* molecules lying 21.9 MeV/c(2) (I = 0) and 10.5 MeV/c(2) (I = 1), respectively, below the (BB)-B-0*(+) threshold. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据