4.6 Article

A tomographic reconstruction algorithm for cross-sectional imaging of IMRT beams from six projections

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 68, 期 9, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6560/acc925

关键词

tomographic reconstruction; radiotherapy quality assurance; multileaf collimator; scintillating-fiber detector

向作者/读者索取更多资源

This study developed a novel method to reconstruct MLC-shaped small irradiation fields from six projections, which can be used for quality assurance in radiotherapy. The results showed that the proposed method accurately reconstructed dose distributions and was suitable for water-equivalent real-time small irradiation fields QA.
Objective. Patient-specific Quality Assurance (QA) measurements are of key importance in radiotherapy for safe and efficient treatment delivery and allow early detection of clinically relevant errors. Such QA processes remain challenging to implement for complex Intensity Modulated Radiation Therapy (IMRT) radiotherapy fields delivered using a multileaf collimator (MLC) which often feature small open segments and raise QA issues similar to those encountered in small field dosimetry. Recently, detectors based on long scintillating fibers have been proposed to measure a few parallel projections of the irradiation field with good performance for small field dosimetry. The purpose of this work is to develop and validate a novel approach to reconstruct MLC-shaped small irradiation fields from six projections. Approach. The proposed field reconstruction method uses a limited number of geometric parameters to model the irradiation field. These parameters are iteratively estimated with a steepest descent algorithm. The reconstruction method was first validated on simulated data. Real data were measured with a water-equivalent slab phantom equipped with a detector made of 6 scintillating-fiber ribbons placed at 1 m from the source. A radiochromic film was used to acquire a reference measurement of a first dose distribution in the slab phantom at the same source-to-detector distance and the treatment planning system (TPS) provided the reference for another dose distribution. In addition, simulated errors introduced on the delivered dose, field location and field shape were used to evaluate the ability of the proposed method to efficiently identify a deviation between the planned and delivered treatments. Main results. For a first small IMRT segment, 3%/3 mm, 2%/2 mm and 2%/1 mm gamma analysis conducted between the reconstructed dose distribution and the dose measured with radiochromic film exhibited pass rates of 100%, 99.9% and 95.7%, respectively. For a second and smaller IMRT segment, the same gamma analysis performed between the reconstructed dose distribution and the reference provided by the TPS showed pass rates of 100%, 99.4% and 92.6% for the 3%/3 mm, 2%/2 mm and 2%/1 mm gamma criteria, respectively. Gamma analysis of the simulated treatment delivery errors showed the ability of the reconstruction algorithm to detect a 3% deviation between the planned and delivered doses, as well as shifts lower than 7 mm and 3 mm when considering an individual leaf and a whole field shift, respectively. Significance. The proposed method allows accurate tomographic reconstruction of IMRT segments by processing projections measured with six scintillating-fiber ribbons and is suitable for water-equivalent real-time small IMRT segments QA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据